

Ro	eg.	N	0.	
nc	S.	TA	υ.	

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

ICI
JS)

B.Tech III Year I Semester Supplementary Examinations August-2021 DESIGN OF MACHINE ELEMENTS-I

(Mechanical Engineering)

Time: 3 hours

Max. Marks: 60

7M

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

a What is meant by factor of safety? Explain how it can be used in design applications **6M** 1 **b** How do you classify materials for engineering use? **6M**

OR

2	a]	a How do you classify the machine design? Explain.		6M
	b	Derive an expression for the impact stress induced due to a falling load.		6M

b Derive an expression for the impact stress induced due to a falling load.

UNIT-II

Explain stress concentration in detail and various methods to reduce stress concentration 12M 3 in machine member.

OR

A circular bar of 500 mm length is supported freely at its two ends. It is acted upon by a 12M 4 central concentrated cyclic load having a minimum value of 20 kN and a maximum value of 50 kN. Determine the diameter of bar by taking a factor of safety of 1.5, size effect of 0.85, surface finish factor of 0.9. The material properties of bars are given by: ultimate strength of 650 MPa, yieldstrength of 500 MPa and endurance strength of 350 MPa.

UNIT-III

- a Write advantages and disadvantages of welded joint over riveted joints. 5 **6M b** Double riveted double cover butt joint in plates 20 mm thick is made with 25 mm **6M**
 - diameter rivets at 100 mm pitch. The permissible stresses are : $\sigma t = 120$ MPa; $\tau = 100$ MPa; $\sigma c= 150$ MPaFind the efficiency of joint, taking the strength of the rivet in double shear as twice than that of single shear.

OR

- a What is an eccentric loaded welded joint? Discuss the procedure for designing such a **5M** 6 joint.
 - **b** Discuss the standard location of elements of a welding symbol.

Q.P. Code: 16ME314

UNIT-IV

7 Design a sleeve and cotter joint to resist a tensile load of 60 kN. All parts of the joint are **12M** made of the same material with the following allowable stresses : σt = 60 MPa ; τ = 70 MPa ; and σc = 125 Mpa

OR

- 8 a What are the applications of a cotter joint?
 - b A shaft made of mild steel is required to transmit 100 kW at 300 r.p.m. The 6M supportedlength of the shaft is 3 meters. It carries two pulleys each weighing 1500 N supported at a distance of 1 metre from the ends respectively. Assuming the safe value of stress, determine the diameter of the shaft.

UNIT-V

9 Design and draw a cast iron flange coupling for a mild steel shaft transmitting90 kW at 12M 250 r.p.m. The allowable shear stress in the shaft is 40 MPa and the angle of twist is not to exceed1° in a length of 20 diameters. The allowable shear stress in the coupling bolts is 30 Mpa.

OR

10 Two 35 mm shafts are connected by a flanged coupling. The flanges are fitted with 6 12M bolts on 125 mm bolt circle. The shafts transmit a torque of 800 N-m at 350 r.p.m. For the safe12M.stresses mentioned below, calculate

i) Diameterof bolts;

- ii) Thickness of flanges;
- iii) Key dimensions;

iv) Hub length;

v) Power transmitted.Safe shear stress for shaft material = 63 MPa; Safe stress for bolt material = 56 MPaSafe stress for cast iron coupling = 10 MPa; Safe stress for key material = 46 Mpa.

*** END ***

6M

R16